Updated H2SO4-H2O binary homogeneous nucleation look-up tables
نویسنده
چکیده
[1] The calculated rates of H2SO4-H2O binary homogeneous nucleation (BHN), which is the only nucleation mechanism currently widely used in global aerosol models, are well known to have large uncertainties. Recently, we have reduced the uncertainties in the BHN rates on the basis of a kinetic quasi-unary nucleation (KQUN) model, by taking into account the measured bonding energetics of H2SO4 monomers with hydrated sulfuric acid dimers and trimers. The uncertainties were further reduced by using two independent measurements to constrain the equilibrium constants for monomer hydration. In this paper, we present updated BHN rate look-up tables derived from the improved KQUN model which can be used by anyone to obtain the BHN rates under given conditions. The look-up tables cover a wide range of key parameters that can be found in the atmosphere and laboratory studies, and their usage significantly reduces the computational costs of the BHN rate calculations, which is critical for multidimensional modeling. The look-up tables can also be used by those involved in experiments and field measurements to quickly assess the likeliness of BHN. For quick application, one can obtain the BHN rates and properties of critical clusters by browsing through the tables. A comparison of results based on the look-up tables with those from widely used classical BHN model indicates that, in addition to several orders of magnitude difference in nucleation rates, there also exists substantial difference in the predicted numbers of sulfuric acid molecules in the critical clusters and their dependence on key parameters.
منابع مشابه
Binary H2SO4-H2O homogeneous nucleation based on kinetic quasi-unary nucleation model: Look-up tables
[1] Recently, we have shown that the binary homogeneous nucleation (BHN) of H2SO4 and H2O can be treated as a quasi-unary nucleation (QUN) of H2SO4 in the equilibrium with H2O vapor and have developed a kinetic H2SO4-H2O nucleation model, which simulates the dynamic evolutions of cluster distributions explicitly. In this paper we present improved and updated version of the QUN model, which has ...
متن کاملNucleation rate lookup tables based on improved quasi-unary H2SO4-H2O homogeneous nucleation and applications
The calculated rates of H2SO4-H2O binary homogeneous nucleation (BHN), which is the only nucleation mechanism currently widely used in global aerosol models, are well known to have large uncertainties. Recently in Yu (J. Chem. Phys. 127, 054301, 2007), we have significantly reduced the uncertainties in the BHN rates based on a kinetic quasi-unary nucleation (KQUN) model by constraining the mode...
متن کاملImproved quasi-unary nucleation model for binary H2SO4-H2O homogeneous nucleation.
Aerosol nucleation events have been observed at a variety of locations worldwide, and may have significant climatic and health implications. Binary homogeneous nucleation (BHN) of H2SO4 and H2O is the foundation of recently proposed nucleation mechanisms involving additional species such as ammonia, ions, and organic compounds, and it may dominate atmospheric nucleation under certain conditions...
متن کاملQuasi-unary homogeneous nucleation of H2SO4-H2O.
We show that the binary homogeneous nucleation (BHN) of H2SO4-H2O can be treated as quasi-unary nucleation of H2SO4 in equilibrium with H2O vapor. A scheme to calculate the evaporation coefficient of H2SO4 molecules from H2SO4-H2O clusters is presented and a kinetic model to simulate the quasi-unary nucleation of H2SO4-H2O is developed. In the kinetic model, the growth and evaporation of sulfur...
متن کاملLaboratory Studies of H2So4/H2O Binary Homogeneous Nucleation from the So2+Oh Reaction: Evaluation of the Experimental Setup and Preliminary Results
Binary homogeneous nucleation (BHN) of sulphuric acid and water (H2SO4/H2O) is one of the most important atmospheric nucleation processes, but laboratory observations of this nucleation process are very limited and there are also large discrepancies between different laboratory studies. The difficulties associated with these experiments include wall loss of H2SO4 and uncertainties in estimation...
متن کامل